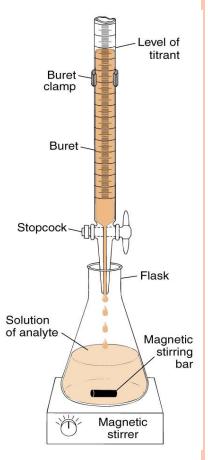

ACID-BASE TITRATION

OM PAL SINGH ASSISTANT DIRECTOR (PMRA), PMD, NIPHM **Titration:** A **titration** is a technique where a solution of known concentration is used to determine the concentration of an unknown solution.

Volumetric titration: Volumetric titrations involve measuring the volume of a solution of known concentration that is needed to react completely with the analyte.

Titrimetric Analysis: Titration, also known as titrimetry, is a common laboratory method of quantitative chemical analysis that is used to determine the concentration of an identified analyte.

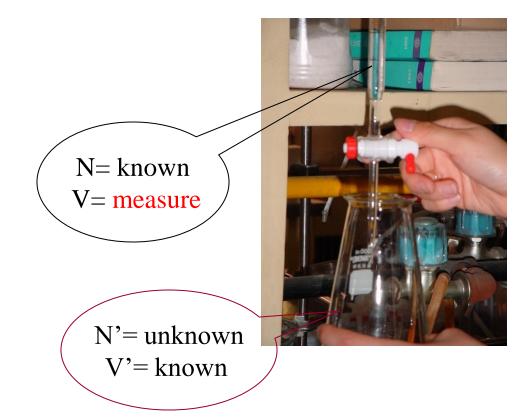

The volume of titrant reacted is called titration volume (tv).

Titrant : The **titrant** is usually a standard solution added carefully to the analyte until the reaction is complete.

The **titrant** is usually the solution of known concentration that is delivered by a burette into a known quantity of the solution of unknown concentration.

The **titrand** is the amount of analyte is calculated from the volume of **titrant** required for complete reaction.

Indicator : Chemical indicator, any substance that gives a visible sign (usually by a **colour change**) of the presence or absence of a threshold concentration of a **chemical species**, such as an acid or an alkali in a solution.



TITRIMETRIC ANALYSIS

- **1.** Acid base titration *NaOH or HCl.* eg: 2,4-D,NAA, Carbofuran.
- 2. Argentometric titration AgNO₃ & KSCN. eg: Catan
- 3. **Iodometric titration** *Na*₂*S*₂*O*₃ (*Hypo*) & *Iodine*. eg: Mancozeb, Copper Oxychloride.
- 4. **Redox Titrations:** *Potassium permanganate and Oxalic acid.* eg: Zinc Phosphide/AlP.
- 5. Non Aqueous Titrations: Perchloric acid. eg: Carbendazim, Tridemorph

Equivalence point :

point in a titration at which equivalent amounts of titrant is the exact amount necessary for stoichiometric reaction with the analyte (titrand).

End point : the point in a titration when **a physical change** occurs that is associated with the condition of chemical equivalence.

The experimental estimate of the equivalence point in a titration

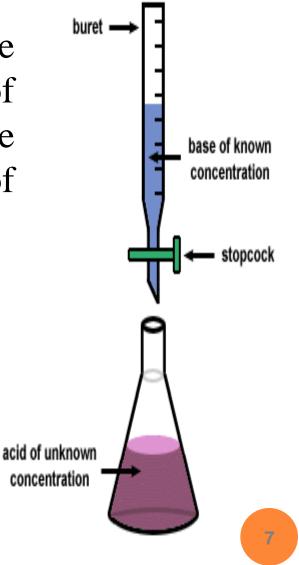
titration error : $e_{\rm T} = V_{\rm ep} - V_{\rm eq}$

 V_{ep} = actual volume at end point,

 V_{eq} = theoretical volume of equivalence point

Direct titration : titrant is added to the analyte until the reaction is complete.

Back titration : Adding a *known excess* of reagent to the analyte, then, a second reagent is used to titrate the *excess* of the first reagent.

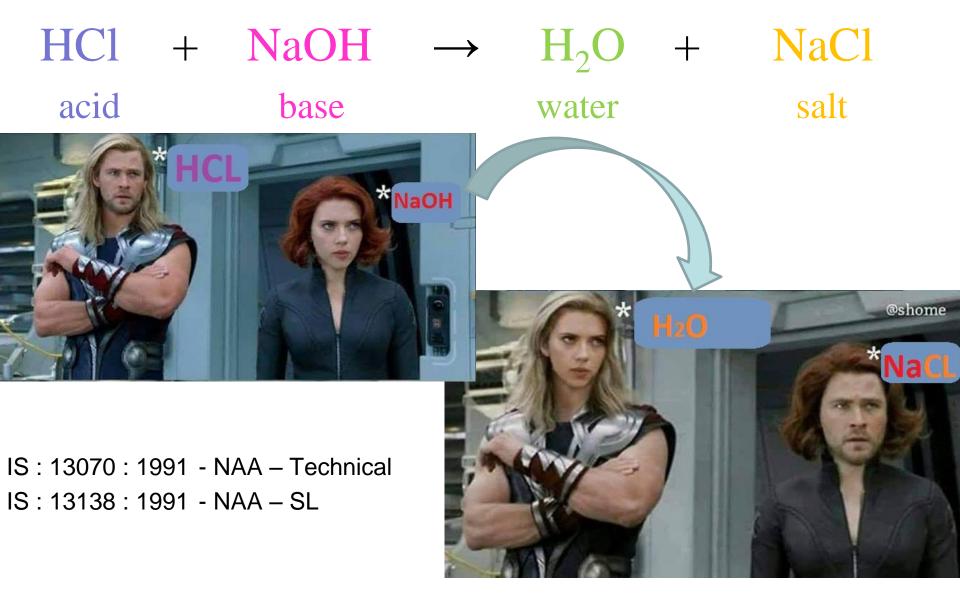

$$\begin{array}{c|c}
A \\
T_1 \\
\hline \\
Finite T_2
\end{array} \xrightarrow{Excess T_1} \\
T_2 \\
\hline \\
Finite T_2
\end{array}$$

$$\begin{array}{c|c}
Finite Fi$$

6

Acid-Base Titration

An acid- Base titration is the determination of the concentration of acid/base by neutralizing the acid/base with known concentration of base/acid.


Reactions between acids and bases (Neutralization Reaction)

General acid base reaction

$\begin{array}{ccc} \textbf{HCI + NaOH} \rightarrow \textbf{H}_2\textbf{O} + \textbf{NaCI} \\ \textbf{acid} & \textbf{base} & water & salt \end{array}$

"Salt" means any ionic compound formed from an acid/base reaction

Volumetric analysis (Acid-Base titration)

PROPERTIES OF ACIDS

- Acids release a hydrogen ion into water (aqueous) solution
- 2. Acids neutralize bases in a neutralization reaction.
- **3.** Acids turn blue litmus to red.
- 4. Acids taste sour.

Litmus Indicator

Acids turn blue litmus paper red.

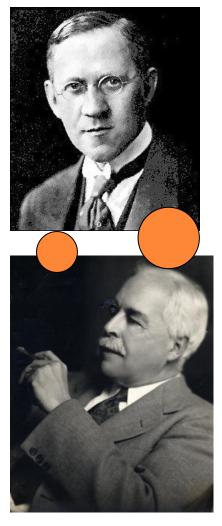
What about red litmus paper in acid? Red litmus paper remains red.

Properties of bases

- 1. Bases release a hydroxide ion into water solution
- 2. Bases neutralize acids in a neutralization reaction.
- **3.** Bases denature protein.
- 4. Bases turn red litmus to blue.
- **5.** Bases taste bitter

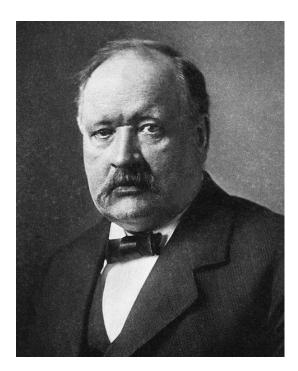
Litmus Indicator

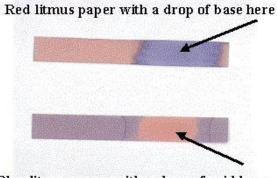
Alkalis turn red litmus paper blue.



What about blue litmus paper in alkali?

Blue litmus paper remains blue.


LET'S START WITH THE THEORISTS!



How should we define acids and bases?

Arrhenius Theory

- <u>Acid</u> a substance that produces H+ ions (protons) when dissolved in water
 - Sour taste
 - Low pH
 - Turns blue litmus paper red
- Base a substance that produces OH- ions when dissolved in water
 - Bitter taste
 - Slippery feel
 - High pH
 - Turns red litmus paper blue

Blue litmus paper with a drop of acid here

Arrhenius Theory

* Acid: any substance which delivers hydrogen ion (H^+) in aqueous solution.

$HCl(aq) + H_2O(l) \rightarrow H_3O^+(aq) + Cl^-(aq)$

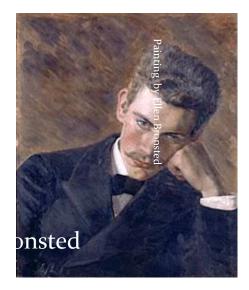
Base: any substance which delivers hydroxide ion (OH) in aqueous solution.

$$NaOH(s) \longrightarrow Na^+(aq) + OH^-(aq)$$

Thus, according to Arrhenius concept of acids and bases, the neutralization of an acid with a base involves the reaction between $H^+(aq)$ and $OH^-(aq)$ i.e.,

$$H^+(aq) + OH^-(aq) \xrightarrow{\text{neutralization}} H_2O(I)$$

from acid from base

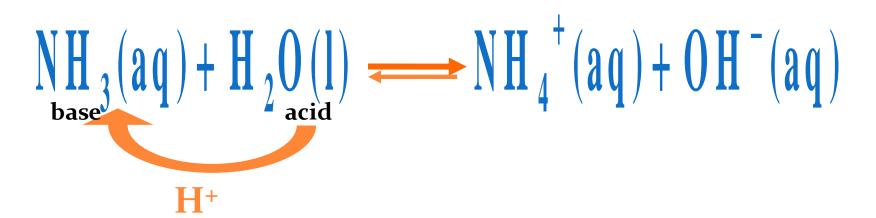

Arrhenius concept

- Is applicable to the acid-base behavior only in the aqueous medium.
- This concept defines acids and bases as compounds-containing hydrogen and hydroxyl group respectively.

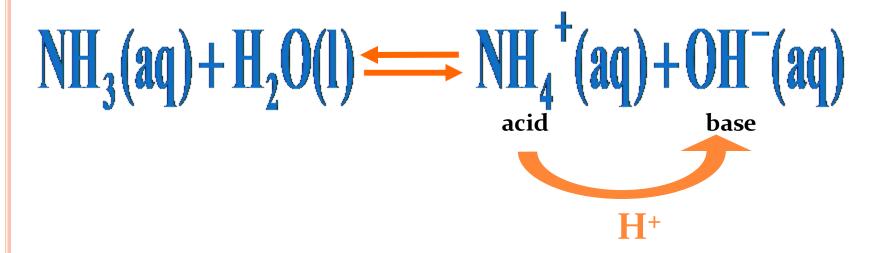
BRONSTED-LOWRY THEORY

• 1923

- <u>Acid</u> a substance that produces H⁺ ions (protons) when dissolved in the any medium
- **Bases** proton acceptors


BRONSTED -LOWERY THEORY

Any acid, (HB) is considered to dissociate in solution to give a proton (H⁺) and a conjugate base (B⁻) where as any base (B) will combine with a proton to produce a conjugate acid (HB⁺)


 $\begin{array}{l} HB \leftrightarrow H^{+} + B^{-} \\ B + H^{+} \leftrightarrow HB^{+} \end{array}$

Substances which are potentially acidic can function as acids only in the presence of a base to which they can donate a proton. Conversely basic properties do not become apparent unless an acid also is present.

> The ability of substances to act as acids or bases will very much depend on the choice of solvent system.

In the forward reaction, NH₃ accepts a proton from H₂O. Thus, NH₃ is a base and H₂O is an acid.

In the reverse reaction, NH₄⁺ donates a proton to OH⁻. The NH₄⁺ ion is the acid and OH⁻ is the base.

Consider the reaction of NH_3 and H_2O .

 $NH_{3}(aq) + H_{2}O(l) \implies NH_{4}^{+}(aq) + OH^{-}(aq)$ acid

- The species NH_4^+ and NH_3 are a conjugate acid-base pair.
- Here NH₄⁺ is the conjugate acid of NH₃ and
 NH₃ is the conjugate base of NH₄⁺.
- The Brønsted-Lowry concept defines a species as an acid or a base according to its function in the proton-transfer reaction.

A Brønsted-Lowry acid...

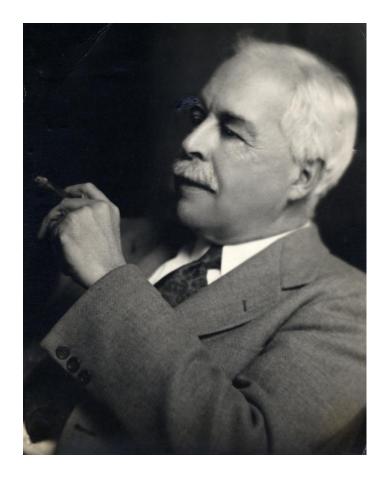
...must have a removable (acidic) proton. HCl, H_2O , H_2SO_4

A Brønsted-Lowry base...

...must accept a proton.

 NH_3, H_2O

IF IT CAN BE EITHER, IT IS AMPHIPROTIC


 HCO_3^- , HSO_4^- , H_2O

25

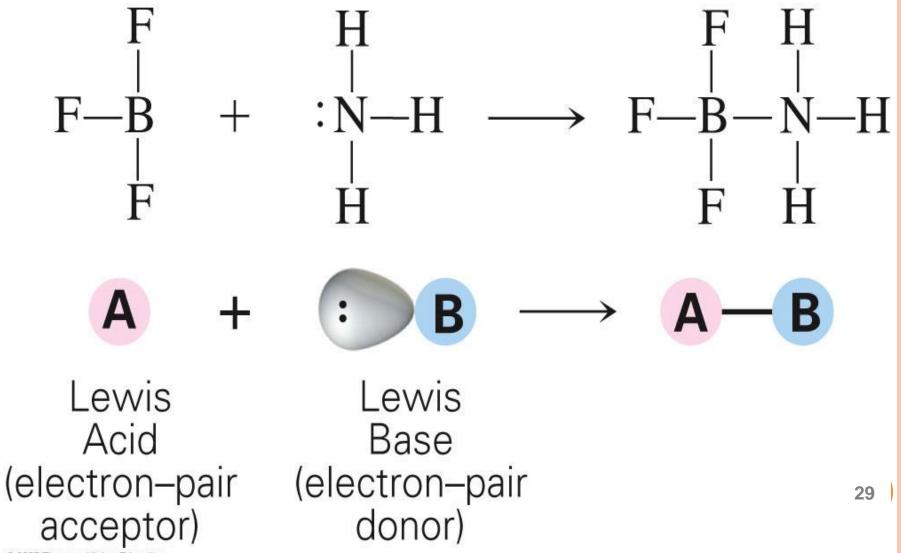
•In the Brønsted-Lowry concept:

- A base is a species that accepts protons; OH⁻ is only one example of a base.
- 2. Acids and bases can be ions as well as molecular substances.
- 3. Acid-base reactions are not restricted to aqueous solution.
- 4. Some species can act as either acids or bases depending on what the other reactant is.

LEWIS THEORY

• Early 1920s

• Acid – electron-pair acceptor


• Base – electron-pair donor

Lewis concept of acids and bases

According to Lewis concept:

- > An acid is a substance which can accept a pair of electrons.
- > A base is a substance which can donate a pair of electron
- Acid-base reactions according to this concept involve donation of electron pair by a base to an acid to form a coordinate bond.

Lewis Theory of Acids & Bases

© 2007 Thomson Higher Education

DEFINITIONS

Arrehenius only in water Acids – produce H⁺ (HCl)
Bases - produce OH⁻ (NaOH)

Bronsted-Lowry any solvent Acids – produce H⁺ (HCl)
Bases - Accepts H⁺ (NH3)

Lewis

Acids – accept e⁻ pair (BF₃)
Bases – donate e⁻ pair (:NH₃)

30

Common Acids:

Strong Acids

The Formula

31

Sulphuric acid Hydrochloric acid Hydrobromic acid Hydroiodic acid Nitric acid Perchloric acid

All others considered Weak (examples)

Weak Acid	The Formula	
Acetic acid (vinegar) Carbonic acid	HC ₂ H ₃ O ₂ H ₂ CO ₃	

Common Bases:

Strong Bases

The Formulae

Lithium hydroxide Sodium hydroxide Potassium hydroxide Rubidium hydroxide Caesium hydroxide Barium hydroxide Calcium hydroxide Strontium hydroxide LiOH NaOH KOH RbOH CsOH Ba(OH)₂ Ca(OH)₂ Sr(OH)₂

(Hydroxides of Group 1 and Group 2 Metals are STRONG)

All others are WEAK bases example

Weak Bases	The Formula	
<u>Ammonia</u>	NH ₃	
<u>Methylamine</u> ,	CH_3NH_2	
<u>Ammoniumhydroxide</u>	NH ₄ OH	

Acid–Base Titrations

- 1. Strong Acid Strong Base Titrations ----- pH =7
- 2. Strong Acid Weak Base Titrations ----- pH < 7
- 3. Weak Acid Strong Base Titrations -----pH >7

Acid–Base Indicators

- > An acid–base *indicator* is a weak acid or base.
- The acid form (HA) of the indicator has one color, the conjugate base (A⁻) has a different color. One of the "colors" may be colorless.
- > In an acidic solution, $[H_3O^+]$ is high. Because H_3O^+ is a common ion, it suppresses the ionization of the indicator acid, and we see the color of HA.
- ➤ In a basic solution, [OH⁻] is high, and it reacts with HA, forming the color of A⁻.

HIn (aq) +
$$H_2 \bigcirc (1) = H_3 \bigcirc^+ (aq) + In^- (aq)$$

acid
(colour A) (colour B)

Acid–Base Indicators

Indicator	Colour		pK _{ln}	pH range
	Acid	Base		
Methyl Orange	red	yellow	3.7	3.2 - 4.4
Bromocresol Green	yellow	blue	4.7	3.8 - 5.4
Methyl Red	yellow	red	5.1	4.8 - 6.0
Bromothymol Blue	yellow	blue	7.0	6.0 - 7.6
Phenol Red	yellow	red	7.9	6.8 - 8.4
Phenolphthalein	colourless	pink	9.4	8.2 - 10.0

TITRATION OF ACID AND BASE

<u>Procedure for preparation of 0.1 N Sodium</u> <u>hydroxide (NaOH):</u>

Weigh about 4 g of sodium hydroxide (Equivalent wt = Molecular wt=40) in 100 ml beaker. Add distilled water and dissolve using glass rod. Transfer quantitatively in 1000 ml volumetric flask and make up with distilled water.

<u>Procedure for preparation of 0.1 N Hydrochloric Acid (HCl):</u>

To preopare 1 L of 0.1 N HCl, the equation will be: (note: Normality of concentrated HCl is about 12 N)

$$N_1 \quad x V_1 = N_2 \quad x \quad V_2$$

```
(12 \text{ N}) \ge V_1 = (0.1 \text{ N}) \ge (1 \text{ L})
```

```
solving for the volume V_1 , we get: V_1 = 8.33ml
```

So to prepare 1L, 0.1 N HCl from a stock solution of concentrated HCl (12 N), we will need to obtain 8.33ml of concentrated HCl and transfer it to a 1 L volumetric flask, then dilute to volume (1 L) with water.

```
      Specific Gravity (g/l) x Percentage (%) x 10

      Normality =

      Equivalent Weight (g/ eq)

      Specific Gravity (g/l) x Percentage (%) x 10

      Molarity =

      Molecular Weight (g/ mol)
```

Procedure for preparation of Phenolphthalein (0.1%):

Weigh about 0.1 g phenolphthalein and transfer into a 250 ml beaker.

Dissolve it in 60 ml ethanol. Add 40 ml distilled water, shake well.

Transfer it into an indicator bottle

Procedure for standardization of Sodium hydroxide

(NaOH) solution:

- Weigh about 0.4 0.5 g of potassium hydrogen phthalate (KHP) previously powdered and dried at 105°C for 1 hrs in a conical flask.
- 2. Dissolve it in 40 50 ml distilled water and add 3 to 4 drops of <u>phenolphthalein</u> indicator.
- 3. Titrate with 0.1 N sodium hydroxide solution.
- 4. End point will be light pink.

$KHC_8H_4O_4 + NaOH \longrightarrow H_2O + NaKC_8H_4O_4$

Note down the volume of sodium hydroxide consumed.

Calculation: Weight of primary standard (KHP) x 1000 Normality = ______ Titre value (0.1N NaOH) x Equivalent wt. of KHP

Equivalent wt. of KHP = 204.22

Procedure for standardization of Hydrochloric acid (HCl) solution:

Weigh out accurately 0.2 g. of pure sodium carbonate into a 250 ml conical flask.

Dissolve it in 50-75 ml water and add 2 drops of methyl orange indicator.

Titrate against hydrochloric acid from the burette until the colour of the methyl orange becomes orange or a faint pink/ pinkish orange.

Normality of HCl=Weight of Na2CO3 x 1000Volume of HCl x 53

Pesticides analysed by Acid base titration

- NAA
- Carbofuran

